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Tiller number is highly correlated with grain yield in wheat. Traditional observation of wheat tiller num-
ber is still manual. Previously, our group developed a high-throughput system for measuring automati-
cally rice tillers (H-SMART) based on X-ray computed tomography (CT), providing high accuracy for
measuring rice tillers. However, the time-consuming reconstruction, which is necessary to generate
tomographic images, limits the throughput improvement of system as well as the CT potential for the
real-time applications. In order to accelerate the reconstruction process, we present an adaptive mini-
mum enclosing rectangle (AMER) method to reduce the number of reconstructed pixels from the full field
of view (FOV) and apply parallel processing using Graphics Processing Unit (GPU). The reconstruction
time and speedup with different methods were discussed. Compared to the AMER method, GPU tech-
nique improved reconstruction with a higher speedup of approximately 200 times. And the speedup with
AMER method was determined by two factors: area ratio of AMER and FOV, and the longest distance
between the vertices of the AMER and the rotation center. Besides reconstruction, tiller identification
could also be accelerated by AMER. Moreover, the tiller measurement accuracy did not decrease. With
the combination of AMER and GPU, the entire tiller inspection time for a pot-grown plant was reduced
from about 11870 ms to less than 200 ms. In sum, the optimized method met the requirement of real-
time imaging and expanded CT application in plant phenomics and agriculture photonics.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

Wheat is a main world food crop (Li et al., 2000), which supplies
one-third of the world’s population (Dhanda et al., 2004). The
spikes or panicle number is dependent upon the number of tiller
per plant (Kuraparthy et al., 2007), while, the number of spike-
bearing tillers is highly correlated with grain yield in wheat (Mass
et al., 1994; Sharma, 1995). Hence, tiller number, which is an
important agronomic character, needs to be observed for wheat re-
search. Traditional observation of wheat tiller number is still man-
ual, which is subjective, labor-intensive and low-reproducibility. In
addition, the traditional method cannot satisfy the requirement for
accuracy and efficiency when a large number of plants need to be
evaluated. Therefore, a high-throughput automatic method is nec-
essary for measuring the tiller number. However, tillers usually
overlap in natural condition, which makes it difficult to detect
the inner tillers even using multi-angle visible light imaging.
ll rights reserved.
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X-ray computed tomography (CT) is a very useful technique in
agriculture engineering (Singh et al., 2010; Cubero et al., 2011). It
has been applied to analysis pore topology inside grain bulks
(Neethirajan et al., 2008), fruit internal quality (Barcelon et al.,
1999), internal log properties (Longuetaud et al., 2004; Yu and
Qi, 2008), plant structure (Heeraman et al., 1997; Stuppy et al.,
2003; Dhondt et al., 2010). In virtue of the penetrability of X-ray,
the internal structures of objects can be revealed. Due to the
X-ray attenuation within tillers, all tillers can be seen in the trans-
verse section image of the wheat culms, and the tiller number can
be determined through image analysis. Nevertheless, the genera-
tion of section image needs to scan the objects at hundreds of dif-
ferent angles, and the reconstruction takes very long computation
time. So, the application of CT for real-time imaging is limited due
to its low speed. It is imperative that the images are computed fast
in many applications (Herman, 1995).

Previously, our group developed a high-throughput system for
measuring automatically rice tillers (H-SMART) equipped with CT
imaging (Yang et al., 2011b). In order to extract more plant
phenotyping parameters, the H-SMART would be incorporated
with other imaging technologies, such as visible light imaging,
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near-infrared imaging, and thermal infrared imaging. The through-
put of H-SMART would be reduced since it will need extra time for
these image processing mentioned above. To solve this problem
and expand the real-time application of CT, time consumption of
CT image processing should be shortened.

Besides the data acquisition speed of CT system, the reconstruc-
tion speed is a critical factor which limits the CT to be used in
real-time applications. Analytical reconstruction algorithms and
iterative algorithms are well-known traditional reconstruction
algorithms but their speed performance is not very good especially
when there are extensive data to be computed. Some methods such
as focus of attention (Benson and Gregor, 2006), air skipping (Lee
et al., 2010) and adaptive region of interest (Yang et al., 2011a) have
been developed to reduce the amount of data to be reconstructed.
Although focus of attention algorithm can avoid a majority of redun-
dant data to be reconstructed, the method contains one time-
consuming step of backprojecting all projections. Classification
and polygon clipping in air skipping technique is computation-
intensive and thus degrades its performance. The region of interest
method takes little time, but the effective sinogram region cannot
be extracted precisely and may contain redundant pixels. Therefore,
it is necessary to develop a new method which can reduce com-
puted data as much as possible at a low time-consumption.

On the other hand, many acceleration techniques based on
hardware have been introduced in CT applications. Using the
Graphics Processing Unit (GPU) is shown to accelerate the CT
reconstruction with a good performance (Xu and Mueller, 2007;
Noël et al., 2010; Okitsu et al., 2010). Acceleration via field pro-
grammable gate array (Gac et al., 2006) or cell broadband engine
(Kachelrieß and Knaup, 2007) is also used for CT reconstruction.
The speed of memory operation in GPU is superior to the operation
in Central Processing Unit (CPU) and GPU is equipped with the par-
allel architecture, thus GPU is well suited for CT reconstruction
which contains mass of repeated processing. In addition, the
NVIDIA common unified device architecture (CUDA) technology
simplifies the GPU programming. Compared with other
hardware, GPU is popular because of its low-cost, flexibility and
programmability.

In this paper, we present a GPU-based CT reconstruction algo-
rithm using an adaptive minimum enclosing rectangle (AMER)
method to accelerate CT reconstruction. Moreover, the present
method is applied to improve the performance of H-SMART. The
objectives of this work were: (1) to devise a fast and effective
AMER method to reduce the amount of computation; (2) using
GPU parallel computing to accelerate the CT reconstruction; and
(3) to test the present method by incorporating it into the
H-SMART and analyze the performance. The rest of the paper is
organized as follows. Section 2 describes the CT system, filtered
back-projection (FBP) algorithm, and the present method com-
bined AMER technique and GPU technique. Section 3 shows the re-
sults and demonstrates the effectiveness of the present method.
Section 4 is the conclusion.
2. Materials and methods

2.1. The CT system

The CT imaging system of H-SMART consisted of a commercial
fan-beam X-ray source (T80-1-60, BMEI Co. Ltd., China), a linear-
array X-ray detector (768 detector elements, x scan 0.4f3-205,
BMEI Co. Ltd., China) and a rotating platform. The pot-grown plants
were delivered to the CT imaging system by an industrial conveyor.
When a pot-grown plant reached the rotating platform, it rotated
with the platform driven by a servo motor to get the projection
data of different angles (step angle 0.85�, covering 336 orienta-
tions). The pixel pitch of the detector was 0.4 mm, and the magni-
fication of the system was 1.26. Hence, the pixel size of the section
image was approximately 0.32 � 0.32 mm. A computer worksta-
tion (HP xw6400, Hewlett–Packard Development Company, USA)
controlled the process of image acquisition and completed data
processing. Details about the H-SMART system were listed in Yang
et al. (2011b).
2.2. FBP reconstruction algorithm

Since FBP reconstruction algorithm was much faster than other
CT reconstruction algorithms, it was used for CT reconstruction of
crop tiller. FBP algorithm (Kak and Slaney, 1988) consisted of two
stages: the preweighted convolution filtering stage and the back-
projection stage. Let P (b,a) be the projection data at angle b, the
preweighted convolution filtering stage was represented by the
following equation:

ePðb; aÞ ¼ Pðb; aÞ Rffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rþ a2
p

� �
� hðaÞ ð1Þ

where R was the distance between the X-ray source and the rota-
tion center, a was the coordinate of projection on the detector
and h(a) was a convolution filter.

Let f(x,y) be the reconstructed image and was computed
through back projection as below:

f ðx; yÞ ¼
Z 2p

0

R2

Uðx; y;bÞ2
eP ½b; aðx; y;bÞ�db ð2Þ

where U(x,y,b) was the weighted value given by:

Uðx; y; bÞ ¼ Rþ x cos bþ y sin b ð3Þ

And the coordinate a was computed as:

aðx; y; bÞ ¼ R
�x sin bþ y cos b

Rþ x cos bþ y sin b
ð4Þ
2.3. Image analysis

Assuming the number of projection angles was M, and the size
of the reconstruction image was N � N, the FBP reconstruction had
the computational complexity of O(MN2). Thus, the reconstruction
time can be reduced by reducing N. Since the preweighted convo-
lution filtering and the backprojection of each pixel were indepen-
dent in FBP algorithm, the use of GPU for parallel computation was
very effective to accelerate the reconstruction process. Here we
proposed a method that can identify the AMER region to be recon-
structed, load projection data into the GPU memory, and compute
the pixel value in parallel.

The overall process of tiller inspection is shown in Fig. 1. In or-
der to remove the noise in the image, the projection was normal-
ized using the Eq. (5) (Yang et al., 2011b):

IN ¼ log
I � ID

I0 � ID
ð5Þ

where I was the original projection data acquired from the linear
X-ray detector; I0 and ID were the blank and dark current projection;
and IN was the normalized projection data. The AMER region was
identified from full field of view (FOV) via the preprocessed projec-
tion. Then, the normalized projection and the parameters of the
AMER were loaded into the GPU. After completing reconstruction
on GPU, the CT image was read back into CPU for tiller identification.



Fig. 1. Overall process of the present method.
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2.3.1. AMER for parallel beam CT system
In parallel beam CT system, for each projection view, the beam

which passed through the object formed a rectangular region.
When considering two orthogonal view angles, the overlap of the
two rectangular regions contained all the object points. As it is
shown in Fig. 2a, the radial S1SD1S and S1ED1E were the tangents
to the object at projection angle h, while the radial S2SD2S, S2ED2E

were the tangents to the object at projection angle h + 90�.
P1(xSS,ySS), P2(xES,yES), P3(xEE,yEE) and P4(xSE,ySE) were the intersec-
tions of tangent lines. And the rectangle they formed, which is indi-
cated in red lines in Fig. 2a, was the overlap rectangular region,
described as the enclosing rectangle. In order to determine the
location of the enclosing rectangle, it was necessary to find the
coordinates of P1(xSS,ySS), P2(xES,yES), P3(xEE,yEE) and P4(xSE,ySE).
Fig. 2a illustrates the geometry of the enclosing rectangle for par-
allel beam projections. t1 and t2 denoted the rotated detector posi-
tion at projection angle h and h + 90�, respectively. O was the
rotation center defined as the origin, and O1 and O2 were the pro-
jections of O on the detector at the angle of h, h + 90�, respectively.
D1S, D1E, D2S and D2E were the corresponding radial projections on
the detector. w1S and w1E were the distances from O1 to D1S and O1

to D1E, respectively. w2S and w2E were the distances from O2 to D2S

and O2 to D2E, respectively. w1S, w1E, w2S and w2E were positive if
the distance vector was in the same direction as the detector,
and negative otherwise. Since w1S, w1E, w2S and w2E can be attained
from the projection image, the coordinates of P1(xSS,ySS), P2(xES,yES),
P3(xEE,yEE) and P4(xSE,ySE) were computed in the following way. The
lines OO1 and P1P2 intersected at A(ax,ay). Let Ax = (ax,0), Ay = (0,ay),
XSS = (xSS,0) and YSS = (0,ySS). According to Fig. 2a, the coordinates of
P1(xSS,ySS) were computed as:

xSS ¼ OAx þ AxXSS

ySS ¼ OAy þ AyYSS
ð6Þ

where OAx, OAy, AxXSS and AyYSS were the lengths of the correspond-
ing lines respectively. And the equations for calculating OAx, OAy,
AxXSS and AyYSS were:

OAx ¼ OA cos h ¼ �w2S cos h

OAy ¼ OA sin h ¼ �w2S sin h

AxXSS ¼ AP1 sin h ¼ �w1S sin h

AyYSS ¼ AP1 cos h ¼ w1S cos h

ð7Þ

where OA and AP1 were the lengths of the lines of OA and AP1,
respectively.

By combining Eqs. (6) and (7) together, we got the formula for
xSS and ySS:
P1ðxSS; ySSÞ
xSS ¼ �w1S sin h�w2S cos h

ySS ¼ w1S cos h�w2S sin h

�
ð8Þ

Analogously, the coordinates of P2(xES,yES), P3(xEE,yEE) and P4(xSE,ySE)
were derived:

P2ðxES; yESÞ
xES ¼ �w1E sin h�w2S cos h

yES ¼ w1E cos h�w2S sin h

�

P3ðxEE; yEEÞ
xEE ¼ �w1E sin h�w2E cos h

yEE ¼ w1E cos h�w2E sin h

�

P4ðxSE; ySEÞ
xSE ¼ �w1S sin h�w2E cos h

ySE ¼ w1S cos h�w2E sin h

� ð9Þ

And let Ar be the area of the enclosing rectangle it was computed
using the coordinates of the P1(xSS,ySS), P2(xES,yES), P3(xEE,yEE), and
P4(xSE,ySE):

Ar ¼ jP1P2j� jP1P4j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxSS�xESÞ2þðySS�yESÞ

2
q����

�����
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxSS�xSEÞ2þðySS�ySEÞ

2
q����

����
¼ jw1E�w1Sj� jw2E�w2Sj ð10Þ

where P1P2 and P1P4 were the lengths of the lines of P1P2 and P1P4

respectively, and |.| denoted absolute value.
Considering all the projection couples that were perpendicular

to one another, we used the enclosing rectangle with minimum
area as the region of interest to be reconstructed.

2.3.2. AMER for fan beam CT system
Fig. 2b illustrates the geometry of the enclosing rectangle for

fan beam projections. For the fan beam CT system, the X-ray (S)
and detector points formed a triangle instead of a rectangle, while
the overlap of the triangles was an anomalous quadrangle
(A1A2A3A4, which is represented as blue lines in Fig. 2b). Construct
two pair of lines of support for A1A2A3A4 through all four extreme
points in the t1 and t2 directions. These lines formed an enclosing
rectangle (P1P2P3P4, which is represented as solid red lines in
Fig. 2b) for A1A2A3A4. Similarly, we defined the enclosing rectangle
as the region of interest. Radial S1O1 intersected A1A2A3A4 at W2S

and W2E. Radial S2O2 intersected A1A2A3A4 at W1S and W1E. Com-
pared with the parallel beam geometry, w1S, w1E, w2S and w2E cor-
responded to the distances from O to the intersections W1S, W1E,
W2S and W2E respectively. According to Fig. 2b, the coordinates of
S1, S2, W1S, W1E, W2S and W2E were (�Rcosh, �Rsinh), (Rsinh,
�Rcosh), (�w1Ssinh, w1Scosh), (�w1Esinh, w1Ecosh), (�w2Scosh,
�w2Ssinh) and (�w2Ecosh, �w2Esinh), respectively. Using the coor-
dinates of S1 and W1S, the equation for the line S1D1S was expressed
in a two-point form as:



Fig. 2. Geometric diagram of the enclosing rectangle at a projection angle: (a)
parallel beam; (b) fan beam; and (c) fan beam approximation.
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y�w1S cos h ¼ �R sin h�w1S cos h
�R cos hþw1S sin h

ðxþw1S sin hÞ ð11Þ

Similarly, the equation for the line S2D2S was expressed as:

yþw2S sin h ¼ �R cos hþw2S sin h
R sin hþw2S cos h

ðxþw2S cos hÞ ð12Þ

Based on Eqs. (11) and (12), the coordinates (x1,y1) of the intersec-
tion A1 were computed using Eq. (13):

A1ðx1; y1Þ
x1 ¼ R

R2þw1Sw2S
�w1SðR�w2SÞ sin h�w2SðRþw1SÞ cos h½ �

y1 ¼ R
R2þw1Sw2S

½w1SðR�w2SÞ cos h�w2SðRþw1SÞ sin h�

8<
:

ð13Þ

The coordinates for A2, A3 and A4 were derived analogously. Using
the coordinates of these points and the direction of the enclosing
rectangle (denoted as h), the equations for the edges of the enclos-
ing rectangle were derived. For instance, the line P1P4, which had
slope tanh and passed through the point A1, was expressed in
point-slope form as:

y� y1 ¼ tan hðx� x1Þ ð14Þ

Finding the intersections of the four edges, the coordinates for P1,
P2, P3 and P4 were calculated as:

P1ðxSS; ySSÞ
xSS ¼ � RðR�w2SÞ

R2þw1Sw2S
w1S sin h� RðRþw1EÞ

R2þw1Ew2S
w2S cos h

ySS ¼ RðR�w2SÞ
R2þw1Sw2S

w1S cos h� RðRþw1EÞ
R2þw1Ew2S

w2S sin h

8<
:

P2ðxES; yESÞ
xES ¼ � RðR�w2SÞ

R2þw1Ew2S
w1E sin h� RðRþw1EÞ

R2þw1Ew2S
w2S cos h

yES ¼ RðR�w2SÞ
R2þw1Ew2S

w1E cos h� RðRþw1EÞ
R2þw1Ew2S

w2S sin h

8<
:

P3ðxEE; yEEÞ
xEE ¼ � RðR�w2SÞ

R2þw1Ew2S
w1E sin h� RðRþw1EÞ

R2þw1Ew2E
w2E cos h

yEE ¼ � RðR�w2SÞ
R2þw1Ew2S

w1E cos h� RðRþw1EÞ
R2þw1Ew2E

w2E sin h

8<
:

P4ðxSE; ySEÞ
xSE ¼ � RðR�w2SÞ

R2þw1Sw2S
w1S sin h� RðRþw1EÞ

R2þw1Ew2E
w2E cos h

ySE ¼ RðR�w2SÞ
R2þw1Sw2S

w2S cos h� RðRþw1EÞ
R2þw1Ew2E

w2E sin h

8<
: ð15Þ

And the area of the enclosing rectangle was computed as:

Ar ¼ jP1P2j� jP1P4j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxSS�xESÞ2þðySS�yESÞ

2
q����

�����
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxSS�xSEÞ2þðySS�ySEÞ

2
q����

����
¼

1þw1E
R

� �
1�w2S

R

� �
1þw1Ew2S

R2

	 
2
1þw1Sw2S

R2

	 

1þw1Ew2E

R2

	 
 jw1E�w1Sj� jw2E�w2Sj ð16Þ

It was noticed that the computation of enclosing rectangle for fan
beam CT system was more complicated than that for parallel beam
CT system. In the H-SMART, R was 3800 while the maximum of w
was 384, so the maximum angle between lines SiD and SiO was
approximately 5�. To simplify the calculation, the radial lines were
regarded as parallel lines. As shown in Fig. 2c, by constructing two
lines paralleled to line t2 and passed through point W1S and point
W1E respectively and two lines paralleled to line t1 and passed
through point W2S and point W2E respectively, four points called
P01; P

0
2; P

0
3 and P04 were determined. The rectangle with vertices

P01P02P03P04 (solid green lines in Fig. 2c) was approximately equivalent
with the enclosing rectangle P1P2P3P4 (solid red line in Fig. 2b). In
this way, the enclosing rectangle was computed approximatively
using Eqs. (8) and (9) instead of using Eq. (15). With simplified com-
putation, the enclosing rectangle may not contain the objects com-
pletely. In addition, the edge blurring in projection image may cause
deviation in locating w, leading to a smaller computed enclosing
rectangle and consequently some tillers were beyond the border
of the reconstruction image. Therefore, there was a need for the
enclosing rectangle expansion. Through the preliminary experi-
ments, the rectangle was designed to expand outward 10 pixels.
Since the enclosing rectangle was determined by w1S, w1E, w2S,
w2E and h, these variables were defined as the parameters of the
enclosing rectangle.

2.3.3. Projection image preprocessing
To get the parameters of the enclosing rectangle, the projection

image should be preprocessed. Since the detector had 768 detector
units and the number of projection angles was 336, the size of the
projection image was 336 � 768. An example of the preprocessing
of the projection image is illustrated in Fig. 3. Fig. 3a is a projection
image after normalization. Applying a fixed threshold which was
determined by preliminary experiments, the projection image
was segmented into a binary image, as shown in Fig. 3b. Whereas
the binary image contained noises it was necessary to extract the
object regions. Since the objects were rotated over 180�, the re-
gions which belonged to the objects would pass through the posi-
tion of the rotation center (shown as red dash line in the Fig. 3) in
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the projection image. Therefore, it was feasible to extract the object
regions by detecting the connected regions along the position of
the rotation center. The extracting algorithm was based on stack
data structure. The detailed steps were as follows:

Step 1: Initialize an empty stack.
Step 2: Along the column which represented the position of the
rotation center, the projection image pixels were scanned from
top to bottom. If a non-labeled foreground pixel p was scanned,
it was labeled and the procedure jumped to Step 3 to scan the
connective region of the labeled pixel. Otherwise, the procedure
jumped to Step 5.
Step 3: Scan the neighbors of the pixel p. If a neighbor pixel was
a non-labeled foreground pixel, it was labeled and pushed in
the stack. When the stack was not empty, remove the top ele-
ment q on the stack and use q to substitute p. And iteratively
execute this step until the stack was empty.
Step 4: The procedure jumped to Step 2 to continue the scan
along the column.
Step 5: Remove labeled regions whose areas were smaller than
a predefined, fixed threshold. The remained labeled regions
were the objects.

The extracted objects image of Fig. 3b is shown in Fig. 3c. Scan-
ning the image from left to right, the first point and the last point
on each row was acquired. To ensure all the active data was in-
cluded in the AMER, both the first point and the last point were ex-
panded 10 pixels. Moreover, the pixels between the first point and
the last point were filled to facilitate AMER extraction. Fig. 3d
shows the image of Fig. 3c after expansion and filling.

2.3.4. AMER identification
After preprocessing, the parameters of the enclosing rectangle

were attained from the projection image and the AMER was deter-
mined by the following procedure:

Step 1: For each projection angle h, calculate the distances from
the start point and end point to the position of the rotation cen-
ter, i.e. w1S and w1E.
Step 2: Similarly, calculate w2S and w2E for projection angle
h + 90�.
Step 3: Calculate the area of the enclosing rectangle Ar at angle h
using Eq. (10).
Fig. 3. Steps of the projection image preprocessing: (a) the normalized projection image;
and filling result.
Step 4: Identify the minimum enclosing rectangle with the min-
imum area among all angles.
Step 5: Calculate the vertices’ coordinates of the minimum
enclosing rectangle in the reconstructed image using Eqs. (8)
and (9).

In the projection image space as shown in Fig. 4a, the No. 0 of
the projection displacement (x-coordinate of the image) repre-
sented the projection position of the rotation center and the detec-
tor was oriented to the right. Fig. 4a illustrates the geometric
diagram for the parameters of the minimum enclosing rectangle.
As shown in the image, the distance parameters w1S, w1E, w2S

and w2E were attained in the projection image.
The minimum enclosing rectangle calculated with these param-

eters was overlaid onto the FOV reconstruction image, as shown in
Fig. 4b. It was noticed that the minimum enclosing rectangle was
not always with sides parallel to the axis of image. Let hm be the pro-
jection angle of the minimum enclosing rectangle. To make image
storage easy and reduce computation complexity, the coordinate
system of the reconstruction image space was rotated by taking
every projection angle minus hm during the backprojection stage.
In this way, the orientation of AMER was horizontal or vertical.
Fig. 4c shows the results of AMER and FOV reconstruction image
after rotation. Let xmin, xmax, ymin and ymax be the value for the left
side, right side, top and bottom of the rotated AMER, and r be the lon-
gest distance between the vertices of the rotated AMER and the rota-
tion center O, the projection data which lay between No.�r and No. r
of the projection displacement, i.e. the so-called active region be-
tween two dash-dot lines in Fig. 4a, contained all the projection data
of AMER. According to the FBP algorithm, it was viable to execute the
convolution filtering merely on the active region and the backpro-
jection operation merely on execute on the AMER region.

2.3.5. GPU based FBP reconstruction using AMER
According to Eqs. (1) and (2), there was no data dependency

among different projections in the preweighted convolution filter-
ing stage as well as among different pixels in the backprojection
stage. Therefore, it was able to parallelize both the stages of recon-
struction. Fig. 5 shows the pseudo-code of the GPU-based recon-
struction algorithm. In Fig. 5, Algorithm 1 was the function
which ran on the CPU for kernels invocation. Algorithm 2 and 3
were the kernels which ran on the GPU to execute preweighted
convolution filtering and backprojection, respectively.
(b) the binary image of (a); (c) object regions extracted from (b); and (d) expansion



Fig. 4. Geometric diagram for AMER (the red rectangle) identification: (a) the parameters of the AMER in the projection image; (b) the AMER in reconstructed image before
rotation; and (c) the AMER in reconstructed image after rotation. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article.)
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Eq. (2) indicated that it did not need data exchange between
pixels during the preweighted convolution filtering stage. How-
ever, each pixel in the same row referred all the projection data
in the row and the convolution filter. Thus, the parallelism scheme
for the preweighted convolution filtering was designed in the fol-
lowing way. The projection data was divided into each row and
then was assigned to different thread blocks for the preweighted
convolution filtering. In addition, the shared memory was used
to store the projection data and the filter (line 26–28) for fast ac-
cess. Let c be the corresponding column index of the rotation cen-
ter in the projection image, the left boundary index (LI) and the
right boundary index (RI) of the active region was attained (line
7 and 8). As it was mentioned above, only the projection data in
the active region was performed (line 33). The size of a thread
block (blockNum) was assigned to 256. Therefore, a thread was pro-
cessing several pixels in the row, depending on the number of pix-
els in a row, as the two loops (line 21–39) shown in Algorithm 2.

While in the backprojection stage, the size of thread block was
16 � 16, and the blocks were organized into a two-dimensional
grid. In this way, each pixel in the AMER region was assigned to dif-
ferent threads. The if condition in line 42 insured that only the pix-
els in the AMER region were performed. To hide the latency of
addressing and get maximum memory bandwidth, the filtered pro-
jection data was stored in the texture memory (line 12) and the
sine and cos values of projection angles was stored in constant
memory (line 13) instead of the global memory.

2.3.6. Tiller identification
The tiller identification algorithm was illustrated in Yang et al.

(2011b). However, there may be some leaves in the section images.
If the leaf area was no less than the tiller area, it cannot be removed
by the removing small particles operation. Therefore, we added a
processing step to remove the leaves. Considering the leaves were
always narrow, we used the length–width ratio as well as the area
to identify them. After removing small particles, we performed two
pre-defined thresholds to the length–width ratio of each individual
object. The non-touching objects and the touching objects were
classified by applying the lower threshold. If the length–width ra-
tio of a touching object was larger than the upper threshold and its
area was smaller than an area threshold, it was identified as a leaf
and removed. All the thresholds used in the processing were deter-
mined through preliminary experiments. Because there was little
parallelism in this stage, GPU technique was not suitable for tiller
identification.

2.4. Algorithm performance test

As introduced above, the tiller inspection procedure of the pres-
ent method consisted of projection normalization, AMER identifi-
cation (contained sinogram preprocessing and AMER calculation),
reconstruction and tiller identification. The present method was
a combined AMER- and GPU-based method. To analysis the accel-
eration performance of different techniques, we compared the
GPU-based method, the AMER-based method, and the AMER-
and GPU-based method with the conventional CPU-based method
respectively. The tiller inspection time of different methods was:

TCPU ¼ TN þ TR:CPU:FOV þ TTI:FOV

TGPU ¼ TN þ TR:GPU:FOV þ TTI:FOV

TAMER ¼ TN þ TAI þ TR:CPU:AMER þ TTI:AMER

TAMERþGPU ¼ TN þ TAI þ TR:GPU:AMER þ TTI:AMER

ð17Þ



Fig. 5. Pseudo-code of the overall GPU algorithm: (a) the algorithm that runs on the
CPU for kernels invocation; (b) the kernel that runs on the GPU to execute
preweighted convolution filtering; and (c) the kernel that runs on the GPU to
execute backprojection.
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where TCPU, TGPU, TAMER and TAMER+GPU were the tiller inspection time
of the CPU-based method, the GPU-based method, the AMER-based
method, and the AMER- and GPU-based method respectively, TN

was the normalization time, TAI was the AMER identification time,
TR.CPU.FOV and TR.GPU.FOV were the reconstruction time of the CPU-
based method and the GPU-based method respectively, TR.CPU.AMER

and TR.GPU.AMER were the reconstruction time of the AMER-based
method and the AMER- and GPU-based method respectively, TTI.FOV

was the tiller identification time of the CPU-based method and the
GPU-based method, and TTI.AMER was the tiller identification time of
the AMER-based method and the AMER- and GPU-based method. It
was noticed that different methods had different effect on different
stages. Therefore, the total reconstruction time (including the AMER
identification time), the tiller identification time and the total tiller
inspection time were measured to analyze the impact of each tech-
nique. The speedup of different methods was relative to the CPU-
based method.

To evaluate the accuracy of the present method, the tiller num-
bers measured using the method were compared against the num-
bers measured using the conventional CPU-based method and the
numbers counted by skilled workers.
The wheat samples used in this paper were composed of 200
pots of Zhengmai 9023 and 43 pots of Huamai 2533 (at the flower-
ing stage). All of the experiments were performed on the worksta-
tion configured with 2.3 GHz main frequency, 3 GB memory, four
CPU processors and an NVIDIA GeForce 9800 512 MB graphics
card.

3. Results and discussion

3.1. Computation time

3.1.1. Reconstruction time of different acceleration techniques
To clarify the impact of different techniques on reconstruction,

all the samples were tested. We selected 30 samples randomly for
listing the reconstruction time and the speedup of different meth-
ods, as shown in Table 1. The GPU technique reduced reconstruc-
tion time with a speedup of approximately 200 times, while
AMER technique achieved several tens of times higher perfor-
mance. Therefore, GPU technique played a main role in the
improvement of reconstruction speed. By combining AMER and
GPU, the reconstruction time was reduced from about 11,500 ms
to tens of ms.

Note that the speedup differed in different images with the
AMER technique. The reason was that the sizes of the AMER for
each image may be varied. Fig. 6 shows the relationship between
the speed ratio of reconstruction and the area ratio. As shown in
Fig. 6, for all the 243 pots of the test samples, the speed ratio for
the total reconstruction process decreased as the area ratio of the
AMER and the FOV was larger. For all the test samples, the area ra-
tio ranged from 0.0047 to 0.2751. The speed ratio ranged from 3 to
38 when only AMER technique was used (shown in Fig. 6a), and
ranged from 169 to 1276 when both AMER technique and GPU
technique were used (shown in Fig. 6b).

It was worth mentioning that the speed ratio of the AMER- and
GPU-based technique was lower than the GPU-based speed ratio
when the area ratio was larger than 0.2. This was because TAI would
be longer than TR.GPU.FOV minus TR.GPU.AMER, when area ratio was lar-
ger than 0.2. It meant that the AMER technique would make no
sense compared with GPU technique, when the proportion of
AMER area was large. Generally, the proportion of AMER area
was small for wheat plants in this work, so applying the AMER
technique was always effective on acceleration. While in other
applications, it was necessary to analyze whether the objects re-
gion was smaller than the FOV region.

3.1.2. Influencing factors of AMER-based reconstruction time
Fig. 6 shows that the speed ratio decreases with the increase of

the area ratio of the AMER and the FOV. It was observed that there
was a fluctuation in the speed ratio at the same area ratio. This was
because the total reconstruction time consisted of the AMER iden-
tification time (TAI), the weighted operation time (Tw), the convolu-
tion filtering time (Tf) and the backprojection time (Tb). The area of
AMER merely determined the pixels which should be backproject-
ed. However, the weighted operation used all the projection data,
and the amount of convolution filtering pixels was determined
by r, which was the longest distance between the vertices of the ro-
tated AMER and the rotation center. In other words, TAI and Tw

were fixed, while Tf and Tb were affected by r and area ratio,
respectively.

In order to further analyze the effect of the parameter r, three
area ratio levels were selected from the range of area ratio and
the speed ratio and r value of each sample at each level were re-
corded. For reliable trend analysis, three different rating area ratios
(0.01, 0.04 and 0.1) with a relatively more samples were selected.
The results are shown in Fig. 7. The lines in the image were the
trendlines of speed ratios. It was inferred that the speed ratio of



Table 1
Reconstruction time and speedup of different acceleration methods over CPU-based method for 30 pots of wheat plants.

No. CPU-based method GPU-based method AMER-based method AMER- and GPU-based method

Time (ms) Time (ms) Speedup Time (ms) Speedup Time (ms) Speedup

1 11485 58 198 515 22 12 957
2 11486 58 198 3491 3 64 179
3 11485 58 198 754 15 17 676
4 11487 59 195 1046 11 20 574
5 11485 57 201 1250 9 27 425
6 11485 58 198 535 21 13 883
7 11486 58 198 3841 3 68 169
8 11485 58 198 688 17 15 766
9 11485 58 198 627 18 16 718

10 11486 58 198 472 24 10 1149
11 11486 58 198 1255 9 24 479
12 11486 57 202 773 15 17 676
13 11486 58 198 1002 11 13 884
14 11485 58 198 468 25 12 957
15 11485 58 198 740 16 18 638
16 11486 58 198 1091 11 24 479
17 11487 58 198 1173 10 25 459
18 11486 57 202 1366 8 29 396
19 11485 58 198 2364 5 47 244
20 11485 57 201 2011 6 44 261
21 11485 58 198 1241 9 26 442
22 11487 58 198 865 13 20 574
23 11486 58 198 1481 8 30 383
24 11485 59 195 1283 9 27 425
25 11485 58 198 1605 7 33 348
26 11486 58 198 2272 5 44 261
27 11487 57 202 1750 7 39 295
28 11487 57 202 1667 7 26 442
29 11485 57 201 677 17 16 718
30 11485 57 201 1125 10 27 425

Fig. 6. Relationship between the speed ratio of reconstruction and the area ratio: (a) the AMER-based method; and (b) the AMER- and GPU-based method.
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reconstruction decreased with the increase of r at the same area ra-
tio. What’s more, the influence of r on the reconstruction speed in-
creased as the area ratio decreased. The reason was that the
proportion of Tf was increased when Tb was reduced significantly.

3.1.3. Tiller identification acceleration with the AMER technique
There should be some differences between TTI.FOV and TTI.AMER. As

the size of the reconstruction image got smaller by the AMER iden-
tification, the time consumption of tiller identification was re-
duced. The tiller identification time and the speedup for the same
30 pots of wheat plants used in Table 1 are shown in Table 2. The
AMER technique led to considerable improvement in tiller identifi-
cation, and the area ratio of the AMER and the FOV also had effect
on the speed ratio of tiller identification (Fig. 8). The speed ratio
decreased with the increase of the area ratio. As the area ratio
ranged from 0.0047 to 0.2751, the speed ratio ranged from 4 to
86. From Fig. 8 it was noticed that the speed ratio varied at the
same area ratio. That was because except for AMER size, the time
consumption of tiller identification was also determined by other
factors such as tiller number, number of touching objects and num-
ber of foreground pixels et al.

3.1.4. Tiller inspection time of different acceleration techniques
As mentioned above, GPU technique improved reconstruction

with a higher speedup comparing to the AMER method, while
the AMER technique had an extra acceleration for tiller identifica-
tion. To analyze the impact of each technique on tiller inspection,
TCPU, TGPU, TAMER and TAMER+GPU were measured. Table 3 shows the
tiller inspection time and the speedup of different methods for
the above 30 pots of wheat plants. The AMER technique achieved
at least 3 times higher performance than the CPU-based method,
and the GPU technique achieved about 34 times higher perfor-
mance, which was a little better than the AMER technique. The en-
tire image processing time for tiller inspection was further reduced
by combining the two techniques. For each test sample, the entire
tiller inspection time was reduced from approximately 11870 ms



Fig. 7. Relationship between the speed ratio of reconstruction and the r value at the
same area ratios.

Table 2
Tiller identification time and speedup for 30 pots of wheat plants with AMER
technique.

No. Without AMER-based method AMER-based method

Time (ms) Time (ms) Speedup

1 347 7 50
2 349 84 4
3 348 17 20
4 343 12 29
5 346 20 17
6 346 13 27
7 347 96 4
8 345 8 43
9 343 13 26

10 343 7 49
11 343 24 14
12 344 12 29
13 348 17 20
14 343 10 34
15 349 13 27
16 347 21 17
17 347 24 14
18 349 30 12
19 346 52 7
20 347 43 8
21 345 22 16
22 347 16 22
23 345 29 12
24 346 27 13
25 348 34 10
26 349 52 7
27 349 38 9
28 351 35 10
29 346 12 29
30 349 23 15

Fig. 8. Relationship between the speed ratio of tiller identification and the area
ratio.

Table 3
The tiller inspection time and speedup of different acceleration methods over CPU-
based method for 30 pots of wheat plants.

No. CPU-based
method

GPU-based
method

AMER-based
method

AMER- and GPU-
based method

Time (ms) Time
(ms)

Speedup Time
(ms)

Speedup Time
(ms)

Speedup

1 11864 347 34 553 21 51 233
2 11868 349 34 3607 3 180 66
3 11865 348 34 803 15 59 201
4 11860 343 35 1090 11 64 185
5 11863 346 34 1302 9 85 140
6 11864 346 34 581 20 58 205
7 11866 347 34 3968 3 197 60
8 11862 345 34 728 16 59 201
9 11859 343 35 673 18 62 191

10 11862 343 35 511 23 53 224
11 11860 343 35 1312 9 81 146
12 11862 344 34 817 15 62 191
13 11863 348 34 1051 11 68 174
14 11862 343 35 510 23 55 216
15 11866 349 34 786 15 65 183
16 11865 347 34 1143 10 82 145
17 11865 347 34 1230 10 82 145
18 11868 349 34 1428 8 97 122
19 11862 346 34 2448 5 131 91
20 11865 347 34 2086 6 119 100
21 11862 345 34 1296 9 80 148
22 11867 347 34 913 13 74 160
23 11861 345 34 1542 8 91 130
24 11866 346 34 1343 9 88 135
25 11868 348 34 1672 7 101 118
26 11866 349 34 2356 5 129 92
27 11868 349 34 1820 7 109 109
28 11867 351 34 1734 7 93 128
29 11865 346 34 721 16 64 185
30 11864 349 34 1180 10 81 146
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to less than 200 ms with the AMER- and GPU-based method. The
results illustrated that the AMER- and GPU-based method was an
optimization method for tiller inspection.

3.2. Measurement accuracy

The present method was implemented on the H-SMART for the
measurement of wheat tiller number. Since it had been proved that
the section image quality was not compromised when using GPU
for CT reconstruction (Xu and Mueller, 2007; Noël et al., 2010),
here we only analyzed the results of wheat tillers measurement
using the conventional CPU-based method and the AMER- and
GPU-based method against the manually measurement results.
Fig. 9 shows a comparison of the three methods. The plot of the
measurement results for Zhengmai 9023 was given in Fig. 9a while
the plot of the measurement results for Huamai 2533 was given in
Fig. 9b. The overlapping of the curves indicated that the differences
of different methods were not significant and the automatic
measurements accuracy was high. It was observed that there was
a slight difference between the two automatic measurements,
which was due to the rotation of AMER. As the section image
reconstructed using the AMER was rotated by a hm angle, there
would be interpolation that may cause gray value difference of
each corresponding pixels in the two section images.

The mean absolute error (MAE defined by Eq. (18)) of the man-
ual and automatic measurements of tiller number were calculated,
respectively. With the CPU-based method, the MAE for the two
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wheat varieties was 0.15 and 1.33, respectively. With the
AMER- and GPU-based method, the MAE for the two wheat varie-
ties was 0.11 and 1.26, respectively:
MAE ¼ 1
n
�
Xn

i¼1

jxai � xmij ð18Þ
where xai and xmi were the automatically measured tiller number
and the manually measured tiller number for the ith sample,
respectively, and n was the number of samples.
Fig. 9. Comparisons of manual measurement, automatic measurement with the CPU-bas
the two varieties: (a) Zhengmai 9023; and (b) Huamai 2533.

Fig. 10. Scatter plot for the AMER- and GPU-based measurement (X) and manual m
The MAE of Huamai 2533 was higher because there were
more small tillers with low X-ray absorption because of water
shortage. The pixel values of these tillers in the section image
were close to background, therefore, they may not be identified.
Linear regression of manual measurement and automatic
measurement (using the AMER- and GPU-based method) for
Zhengmai 9023, Huamai 2533 are shown in Fig. 10a and b,
respectively. The results indicated that the automatic measure-
ment with the AMER- and GPU-based method was highly corre-
lated with manual measurement and there was a well linear
relationship between them.
ed method and automatic measurement with the AMER- and GPU-based method for

easurement (Y) of tiller numbers: (a) Zhengmai 9023; and (b) Huamai 2533.
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4. Conclusions

In this paper, we presented an AMER method to reduce the
computation amount of CT reconstruction. Combined with the
GPU technique, the method was capable of speeding up the recon-
struction of wheat section in H-SMART about hundreds of times
faster than the conventional CPU-based method. Moreover, the
method was able to speed up the tiller identification about tens
of times without reducing the measurement accuracy of tiller
number. With the acceleration of reconstruction, the H-SMART
performance was improved, which excavated the potential of inte-
grating other imaging technologies into the facility. In addition,
this method had the potential of being applied to three-dimen-
sional CT imaging systems with some modifications. The improve-
ment of the method got more significantly as the area ratio of the
AMER and the FOV got smaller, and the method will be more effec-
tive with a larger volume. In sum, this method expanded CT appli-
cation in plant phenomics and agriculture photonics.
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