
Plant phenomics and high-throughput phenotyping: accelerating
rice functional genomics using multidisciplinary technologies
Wanneng Yang1,2,3,5, Lingfeng Duan2,5, Guoxing Chen4, Lizhong Xiong1

and Qian Liu2

Available online at www.sciencedirect.com
The functional analysis of the rice genome has entered into a

high-throughput stage, and a project named RICE2020 has

been proposed to determine the function of every gene in the

rice genome by the year 2020. However, as compared with the

robustness of genetic techniques, the evaluation of rice

phenotypic traits is still performed manually, and the process is

subjective, inefficient, destructive and error-prone. To

overcome these limitations and help rice phenomics more

closely parallel rice genomics, reliable, automatic,

multifunctional, and high-throughput phenotyping platforms

should be developed. In this article, we discuss the key plant

phenotyping technologies, particularly photonics-based

technologies, and then introduce their current applications in

rice (wheat or barley) phenomics. We also note the major

challenges in rice phenomics and are confident that these

reliable high-throughput phenotyping tools will give plant

scientists new perspectives on the information encoded in the

rice genome.
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Introduction
Rice is a major crop and a staple food throughout the

world. In the face of the challenges presented by global

environmental change and the rapidly growing human
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population, methods to exploit the high-production and

high-quality potential of rice with reduced input are

urgently needed [1]. Therefore, appropriate strategies

for developing green super rice that would possess insect

and disease resistance, high nutrient use efficiency, and

drought resistance, has been proposed [2�]. Additionally,

because of its importance as a model crop for monocoty-

ledon plant science research, there have been many

efforts to improve rice functional genomic research using

high-throughput genomics tools [3]. Because of the rapid

development of functional genomic and gene technol-

ogies over the past decade, particularly sequencing tech-

nology, the complete rice genome is now available, and

the functional analysis of the rice genome has entered the

high-throughput stage [4]. Although dozens of key genes,

such as S5 [5], GS5 [6], SNAC1 [7], RID1 [8], GS3 [9], and

pms3 [10], have been cloned or characterized for their

functions in controlling important agronomic traits, the

available genetic information has not been adequately

exploited due to the outdated phenotyping tools. Indeed,

it is apparent that high-throughput physiology and phe-

notyping have become a new bottleneck in plant biology

and crop breeding [11].

To relieve this bottleneck and receive the full benefit of

the available genomic information, plant phenomics,

which integrates technologies such as photonics [12�],
biology [13�], computers, and robotics, will permit the

functional characterization of rice genes [14��]. Thus,

reliable, automatic, multifunctional, and high-throughput

phenotyping platforms should be developed to allow rice

physiology and phenomics to better parallel rice geno-

mics. Through such novel technologies, plant phenomics

could offer plant scientists new insight into all the aspects

of living plants [15��].

The most frequently investigated phenotypic traits

include root morphology [16�], leaf characteristics

[17], biomass [18,19��], yield-related traits [20��],
photosynthetic efficiency [21], and abiotic stress

response [22]. Here, we first introduce the key plant

phenotyping technologies and highlight the photonics-

based technologies. Next, we focus on the current

applications in rice (wheat or barley) phenomics, as

these three crops have similar morphological traits,

such as multiple tillers and leaf characteristics. To

conclude, we envision the application of a high-

throughput phenotyping platform and note the major

challenges in rice phenomics.
www.sciencedirect.com
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Key technologies in plant phenomics
Visible light imaging

Since the first digital camera was invented by Eastman

Kodak in 1975 (www.letsgodigital.org/en/16859/ce-hall-

of-fame), visible light imaging technology has been

widely adopted in plant science due to its low cost and

ease of maintenance. With a similar wavelength (400–
700 nm) perception as the human eye, two-dimensional

(2D) photography can be used to analyze shoot biomass

[18,19��], yield-related traits [20��], leaf morphology [23],

panicle traits [24], and the system architecture traits of

washed roots or roots grown in transparent media [25].

Several approaches have been developed to overcome the

loss of spatial and volumetric information upon com-

pression to 2D images such as three-dimensional (3D)

mesh algorithms, which could provide more accurate

estimations of the morphological features of roots or

shoots. A novel 3D imaging and software platform (Roo-

tReader3D) for the rice root system was developed to

measure 27 root traits by acquiring 40 2D images, and this

phenotyping platform can monitor a number of root

growth and root system architecture (RSA) traits with

an efficiency of over 100 roots per day [26]. Another novel

3D mesh-based technique was developed for the high-

throughput analysis of stem height, leaf width and leaf

length in cotton plants by capturing 64 side-view images

when each plant is rotated 3608. This methodology

exhibited a mean absolute error of less than 10% and

an average execution time (including 3D mesh segmen-

tation and data extraction) of approximately 4.9 min [27].

Additionally, a 3D digitizer and L-system formalism was

used to reconstruct ‘3D virtual rice’, with which it was

possible to determine the growth function and estimate

the tillering process and leaf accumulation [28]. Thus,

when integrated with 2D or 3D image analysis, low-cost

visible light-imaging techniques are always a first choice

and are popular components of the integrated phenotyp-

ing platform. However, there is always a trade-off be-

tween the precision and efficiency of image analysis; with

equivalent trait extraction accuracies, 2D digital image

analysis is more efficient and suitable for high-throughput

phenotyping than in 3D technology.

Infrared and hyperspectral imaging

Because of internal molecular movements, all objects

emit characteristic infrared radiation [29]. Two popular

infrared imaging devices can be used to screen radiation

images: a near-infrared (NIR, wavelength of approxi-

mately 0.9–1.7 mm) imaging device and a far-infrared

(Far-IR, wavelength of approximately 7.5–13.5 mm) ima-

ging device. Healthy green plants reflect a large pro-

portion of NIR light from 800 to 1400 nm, whereas the

soil reflects little NIR light; moreover, soil and unhealthy

plants reflect considerably more red wavelength light as

compared with healthy plants. For these reasons, many

studies have combined NIR imaging and visible imaging
www.sciencedirect.com 
to detect vegetative indices. A Crop Phenology Record-

ing System (CPRS) has been developed for monitoring

rice growth. CPRS uses visible light imaging to derive the

visible atmospherically resistant index and uses near-

infrared imaging (830 nm) to derive the night-time

relative brightness index and then establishes the

relationship between the camera-derived indices and

the agronomic traits [30]. Another approach integrates

the visible red image (630–670 nm) and near-IR image

(820–900 nm) to assess the rice leaf area index during the

before-heading period [31] and then uses only near-infra-

red imaging to predict the leaf area index (LAI) [32]. Far-

IR (also called IR thermal) imaging is the most general

technique with which to visualize temperature differ-

ences, and it is used in plant drought resistance or

insect inspection, as it will be discussed in the ‘current

applications’ section below.

Beyond visible and IR imaging technology, hyperspectral

imaging techniques can divide images into bands, thus

providing a vast portion of the electromagnetic spectrum

of the photograph. The reflected spectra of crop plants

may carry information about plant architecture and health

conditions and, therefore, can be used to evaluate plant

growth characteristics. The high spectral resolution of

hyperspectral technology makes it a promising method

for detecting the severity of damage caused by insects

[33], for assessing rice leaf growth [34], and for determin-

ing the condition of rice panicles [35]. Moreover, hyper-

spectral imaging of grain kernels would potentially

provide information concerning internal infestation [36]

and grain cleanness [37], which can be used to discrimi-

nate healthy kernels, insect-damaged kernels, and other

materials. However, it is worth mentioning that, due to

the low speed of scanning, hyperspectral imaging is more

suitable for the preliminary investigation of waveband

signatures to guide high-throughput inspection by redu-

cing the redundant spectra.

3D structural tomography and functional imaging

In recent years, several modern optical imaging tech-

niques, for instance, 3D structural tomography and func-

tional imaging, have been developed and expanded to

improve living plant visualization. The rice plants serve

as ‘patients’ in a novel use of X-ray computed tomography

(CT) scanners to estimate the tiller number [38��].
Equipped with an acceleration algorithm using the adap-

tive minimum enclosing rectangle (AMER) and graphics

processing unit (GPU), the entire tiller inspection time of

one plant is less than 200 ms [39]. Moreover, the incorp-

oration of various optical sensors, such as visible and

infrared digital cameras, provides this system with the

potential to achieve the advanced screening of multiple

traits for pot-grown rice plants within one chamber [38��].

The in vivo 3D imaging of plant structures (e.g., an

Arabidopsis leaf) at a microscopic level has been permitted
Current Opinion in Plant Biology 2013, 16:180–187
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by optical coherence microscopy (OCM) [40]. OCM,

sometimes called optical coherence tomography

(OCT), is a new photonics-based technology with an

approximately 1 mm spatial resolution. However, the

image quality decreases rapidly when the inspection

sections are deeper than 60–80 mm. With advantages such

as a greater penetration and capability of detecting non-

fluorescent signals, optical projection tomography (OPT)

can be applied to visualize plant development and gene

expression. One shortcoming of this technique is that

large specimens must be cleaned before imaging, thus it is

difficult to extend this technique to high-throughput

phenotyping [41]. In contrast, X-ray CT is regarded as

an appropriate tomography for the inner structural phe-

notyping of multitiller plants (such as rice plants) due to

its relatively low cost and high spatial resolution.

In contrast to structural imaging, functional imaging

technologies (such as fluorescence imaging and positron

emission tomography, PET) focus on revealing changes

in plant physiology. Chlorophyll fluorescence imaging is

widely used to determine photosynthetic performance

and stress in plants [42]. By tracing the positron-emitting

radionuclides in plants (e.g., 11C, 13N, and 15O), PET is

able to visualize the distribution and transportation of

radionuclide-labeled tracers involved in metabolism-

related activities [43]. However, the disadvantage of

functional imaging techniques is the low spatial resol-

ution, thus the combination of the structural tomography

(with a high spatial resolution) and functional imaging

techniques can more accurately screen physiology

activity. The combined application of PET and CT

technologies provides simultaneous spatial and temporal

root architecture data and links the observed morphology

with the recently assimilated 11C [44]. Magnetic reson-

ance imaging (MRI) is another novel technique that

is able to image the protons of water, thus providing
Table 1

Applications of the current photonics-based techniques in rice, whea

Optical technique Cost 

Visible light imaging Low Shoot bio

Yield trait

Panicle tr

Root arch

Near-infrared imaging Medium Leaf area

Far-infrared imaging Medium Shoot or 

Insect infe

Hyperspectral imaging Medium Leaf healt

Leaf healt

Leaf grow

Panicle h

Grain qua

Fluorescence imaging Medium Photosyn

Leaf healt

X-ray digital radiography Medium Grain qua

X-ray computed tomography Medium Tillers 
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structural information about the internal physiological

processes occurring in vivo [45]. Moreover, the combi-

nation of MRI and PET is a novel structure and func-

tional imaging technique for screening the dynamic

changes in plant structures and functions [43]. In

addition, several potential photonic technologies could

be applied in plant phenotyping. Terahertz radiation

(frequency range between 0.1 and 3 THz) is very sensi-

tive to water and thus, could be adopted to determine the

leaf water status and monitor drought stress [46]. Photo-

acoustic tomography (PAT) can provide anatomical and

functional information from organelles to organs of up to

7 cm, and it is not constrained by the optical diffusion

limit [47]. To date, compared with other expensive

functional imaging techniques, fluorescence imaging,

particularly chlorophyll fluorescence, is widespread in

plant phenomics. The applications of the optical tech-

niques currently used in rice, wheat and barley are listed

in Table 1.

In addition, there are some other essential techniques or

factors in plant phenomic research such as a flexible

image analysis pipeline [48�], an accurate and integrated

model [49], an effective data management system (e.g.,

‘PHENOME’ with personal digital assistant [50]), an

optimal transportation planning of robotics [51], a meti-

culous experimental setup [13�], and even the choice of

the proper pot (or growth container) [52].

Current applications of phenomics in rice or
other cereal crops
Abiotic stress resistance

Because of nondistinct and complex mechanisms

involved in the responses of plants to abiotic stresses,

including salinity, drought, extreme temperatures, and

nutrient deficiencies [22], the phenotyping of abiotic

stress resistance is often a big challenge. With the ability
t or barley

Trait Species Reference

mass Barley [19��]

s Rice [20��]

aits Rice [24]

itecture Rice [25,26]

 index Rice [30–32]

leaf temperature Barley, wheat [55]

station of grain Wheat [75]

h status Rice [33,59]

h status Wheat [61]

th Rice [34]

ealth status Rice [35]

lity Wheat [36]

thetic performance Multivarieties [42]

h status Wheat [61]

lity Wheat [72–74]

Rice [38��]
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to reliably screen multiple traits under stress conditions,

high-throughput phenotyping techniques are essential for

improving this understanding [53]. Nondestructive

measurements of plant growth have been developed

using visible light imaging techniques with a Scanalyzer

3D to characterize overall plant salinity tolerance mech-

anisms, Na+ exclusion, osmotic tolerance, and tissue

tolerance [54]. Using the plant age and plant area calcu-

lated by the Scanalyzer 3D, a modified model enables the

more accurate high-throughput estimation of biomass for

cereal plants under saline conditions [19��]. IR thermal

imaging is also commonly used to quantify the osmotic

stress response to salinity or drought in cereal crops [55].

By precisely controlling the environments of each pot-

grown cereal plant in the greenhouse, these accurate,

high-throughput phenotyping tools can overcome the

limitations of current salinity-resistance or drought-resist-

ance research.

Compared with chlorophyll meters or leaf color charts,

visible and NIR digital imaging techniques [56] are more

suitable for the high-throughput screening of nitrogen

status. Furthermore, by incorporating accurate phenotyp-

ing, multi-environment statistical analyses and high-

resolution genetic dissection, a reliable gene-to-pheno-

type model can bridge the gap between functional poly-

morphisms and tolerance to abiotic stresses in cereals

[57�].

Insect and disease resistance

Both grain production and grain quality decrease as plants

are damaged by insects and disease; it is, therefore,

important to detect and classify the plant infestations

at an early stage [58]. To identify rice blast disease at the

seedling stage, a near-infrared hyperspectral imaging

system was developed to scan clipped leaves, with an

overall accuracy of classification (infected and healthy

leaves) of approximately 92% [59]. In addition to these

destructive measurement techniques, there are several

approaches to achieve real-time and dynamic screening in
vivo for pot-grown rice or field-grown cereals. With a

color-based corner detection algorithm, visible image-

based methods can detect plant-hopper infestations on

the stems of pot-grown rice [60]. Integrating hyper-spec-

tral and fluorescence imaging enables the detection of

yellow rust in a winter wheat field, and the overall

discrimination performance can reach 99% with a self-

organizing map neural network [61]. Moreover, with a

high-resolution web camera and a remote management

system, an automatic field service system has been pro-

posed to reduce the need for manual counting and to

continuously monitor the presence of rice bugs. In

addition, the system has the potential to achieve

advanced field monitoring in conjunction with special

sensors, such as infrared cameras [62]. Thus, optical

screening methods could provide a high-throughput,

high-accuracy, and time-lapsed inspection incorporated
www.sciencedirect.com 
with advanced image analyses, surpassing human experts

in monitoring plant diseases [63].

Yield and quality improvement

Yield is a complex agronomic trait that is determined by

the grain number per plant and grain weight (influenced

by grain size). Utilizing a less-expensive flatbed scanner

for image acquisition, a user-coded ImageJ software plu-

gin was developed to determine the major orthogonal

dimensions of the grains (grain length, grain width) [64]

and to analyze the sieveless particle size distribution [65].

To accelerate the measurements of spikelet number, a

bimodal scanner using visible light imaging and X-ray

digital radiography (DR) was employed for the rapid and

simultaneous measurement of filled/unfilled rice spike-

lets [66]. Furthermore, to achieve fully automated yield

trait scoring, an integrated facility has been developed to

thresh rice panicles, evaluate rice yield traits, and pack

filled spikelets. This novel machine vision-based facility

is highly accurate (mean absolute percentage error is less

than 5%) and highly efficient (1440 plants per continuous

24 hours workday) [20��].

Grain quality, encompassing grain appearance, health,

and nutrition, are one of the most commonly quantified

traits in rice breeding [67]. Using an inexpensive flatbed

scanner and noncomplex image analysis, several rice

quality traits, including chalkiness [68], protein content

[69], and breakage [70], can be quantified with high

accuracy. Equipped with a digital microscope and appro-

priate image analysis software, trans-illuminated imaging

also can be used to assess wheat quality [71]. X-ray DR is

used to image single kernels and detect internal wheat

seed infestations [72], sprouted wheat kernels [73] and

vitreousness in durum wheat by revealing changes in

internal density [74]. Thermal imaging also permits the

detection of insects inside wheat kernels [75]. In these

studies, the samples must be manually placed on the

sample platform before image capture; thus, high-

throughput inspection cannot be achieved. An automatic

rice-quality inspection system incorporating a near-infra-

red instrument and a visible light segregator has been

developed to determine the protein content, moisture

content, and sound whole-kernel ratio [76�]. Thus, with

the appropriate optical imaging, image analysis and

robotics tools, these techniques have the potential to

achieve the high-throughput scoring of yield and quality,

which will be popular in rice (or other cereals) science

research.

Conclusions and future directions

Because of the robust genetic technologies, the functional

analysis of the rice genome has entered into a high-

throughput stage, and the RICE2020 project has been

proposed to determine the function of every gene in the

rice genome by the year 2020 [77]. To achieve levels of

quality and speed comparable to those of genomics,
Current Opinion in Plant Biology 2013, 16:180–187
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The main techniques (agronomy, robotics, photonics and computer analyses) needed in plant phenotyping platforms. Using robotics, the rice plants to

be screened are transported to the inspection unit. The inspection chamber, which is the core of the phenotyping platform, carries out the noninvasive,

high-throughput screening of plant phenotypic traits using photonics and computers. After image analysis, the quantified traits, environmental data

(e.g., illumination, temperature, irrigation, fertilizer) and genotype are all managed in a database, which produces a ‘phenotype–genotype model’ and

allows the simulation or predication of responses for special genotypes in different environmental scenarios.
reliable, automatic, multifunctional, and high-throughput

phenotyping platforms should be developed using various

novel technologies (Figure 1). There is advanced progress

in plant phenomics, particularly in Europe (e.g., at the

IPK, Leibniz Institute of Plant Genetics and Crop Plant

Research) and Australia (at the APPF, Australian Plant

Phenomics Facility). However, because rice is a staple

food in many developing countries, more efforts to

develop low cost and high performance rice phenomic

technologies are needed.

Besides, with multifunctional phenotyping tools obtain-

ing a large quantity of images and data, how to run the

data-storage, handling and analysis will be another chal-

lenge in plant phenomics. The data volume mainly

depends on the resolution of the imaging detectors and

the numbers of acquired image from each inspection. And

the data analysis methods, such as principal components

analysis (PCA) [78], support vector machine (SVM) [79],

and artificial neural network (ANN) [80], are often used

for data dimension reduction and efficient parameters

extraction. In future, to further promote the application

of plant phenotyping, less expensive and sophisticated

data analysis infrastructures (e.g., HTPheno [48�] and

IAP [81] incorporating the open-source software ImageJ)

need to be developed and popularized.
Current Opinion in Plant Biology 2013, 16:180–187 
Thus, in our opinion, convincing rice scientists to accept

or even rely on digital phenotyping platforms, reducing

the platform costs, and developing efficient data storage

and analysis infrastructures are the main challenges for

the future. However, we are confident that these reliable,

high-throughput phenotyping tools will give plant scien-

tists new insights into the information encoded in the rice

genome.

Conflicts of interest
The authors declare that there are no conflicts of interest

related to this publication.

Acknowledgements
This work was supported by grants from the National Program on High
Technology Development (2012AA10A303), National Program for Basic
Research of China (2012CB114305), the National Natural Science
Foundation of China (30921091, 31200274), and the Program for New
Century Excellent Talents in University (No. NCET-10-0386).

References and recommended reading
Papers of particular interest, published within the period of review,
have been highlighted as:

� of special interest

�� of outstanding interest

1. Tester M, Langridge P: Breeding technologies to increase crop
production in a changing world. Science 2010, 327:818-822.
www.sciencedirect.com



Plant phenomics and high-throughput phenotyping Yang et al. 185
2.
�

Zhang QF: Strategies for developing green super rice. Proc Natl
Acad Sci USA 2007, 104:16402-16409.

This review was the first to propose the concept of ‘green super rice’ that
would possess insect and disease resistance, high nutrient efficiency,
drought resistance, and high grain quality and yield. To achieve this goal,
the combination of high-throughput phenotyping platforms and genomic
tools will be necessary.

3. Xing YZ, Zhang QF: Genetic and molecular bases of rice yield.
Annu Rev Plant Biol 2010, 61:421-442.

4. Holtorf H, Guitton MC, Reski R: Plant functional genomics.
Naturwissenschaften 2002, 89:235-249.

5. Chen JJ, Ding JH, Ouyang YD, Du HY, Yang JY, Cheng K, Zhao J,
Qiu SQ, Zhang XL, Yao JL et al.: A triallelic system of S5 is a
major regulator of the reproductive barrier and compatibility
of indica–japonica hybrids in rice. Proc Natl Acad Sci USA 2008,
105:11436-11441.

6. Li YB, Fan CC, Xing YZ, Jiang YH, Luo LJ, Sun L, Shao D, Xu CJ,
Li XH, Xiao JH et al.: Natural variation in GS5 plays an important
role in regulating grain size and yield in rice. Nat Genet 2011,
43:1266-1269.

7. Hu HH, Dai MQ, Yao JL, Xiao BZ, Li XH, Zhang QF, Xiong LZ:
Overexpressing a NAM ATAF, and CUC (NAC) transcription
factor enhances drought resistance and salt tolerance in rice.
Proc Natl Acad Sci USA 2006, 103:12987-12992.

8. Wu CY, You CJ, Li CS, Long T, Chen GX, Byrne ME, Zhang QF:
RID1 Encoding a Cys2/His2-type zinc finger transcription
factor, acts as a master switch from vegetative to floral
development in rice. Proc Natl Acad Sci USA 2008, 105:12915-
12920.

9. Fan CC, Xing YZ, Mao HL, Lu TT, Han B, Xu CG, Li XH, Zhang QF:
GS3, a major QTL for grain length and weight and minor QTL
for grain width and thickness in rice, encodes a putative
transmembrane protein. Theor Appl Genet 2006, 112:
1164-1171.

10. Lu Q, Li XH, Guo D, Xu CG, Zhang Q: Localization of pms3, a
gene for photoperiod-sensitive genic male sterility, to a 28.4-
kb DNA fragment. Mol Gen Genomics 2005, 273:507-511.

11. Furbank RT: Plant phenomics: from gene to form and function.
Funct Plant Biol 2009, 36:v-vi.

12.
�

Kelley B: Agri-photonics. SPIE Prof 2009, 7:14-17.
This paper in SPIE Professional was the first to explicitly propose the
concept of ‘Agri-Photonics’ and to introduce several applications in
agriculture using novel optics technology.

13.
�

Poorter H, Fiorani F, Stitt M, Schurr U, Finck A, Gibon Y, Usadel B,
Munns R, Atkin OK, Tardieu F, Pons TL: The art of growing plants
for experimental purposes: a practical guide for the plant
biologist. Funct Plant Biol 2012, 39:821-838.

This paper aimed to standardize the experimental setup, including the
environments and sample numbers, which is useful for phenotyping
investigations. A practical checklist for a minimum set of environmental
data is available in this paper.

14.
��

Furbank RT, Tester M: Phenomics-technologies to relieve the
phenotyping bottleneck. Trends Plant Sci 2011, 16:635-644.

This review proposes a ‘phenomics wheel’ to close the gene to genotype
loop, particularly for applications in abiotic stress tolerance, biotic stress
tolerance, and breeding. The authors conclude that multidisciplinary
approaches in plant phenomics should include genetics and physiology,
as well as physics, mathematics and other areas of biology.

15.
��

Finkel E: With ‘Phenomics’, plant scientists hope to shift
breeding into overdrive. Science 2009, 325:380-381.

This paper first introduced the current leading phenomics center, High
Resolution Plant Phenomics Centre (HRPPC) and Plant Accelerator in
Australia, and emphasized that borrowing imaging techniques from
medicine for use in plants will offer plant scientists new tools to visualize
the inner working of living plants and help foment the next green revolu-
tion.

16.
�

Zhu JM, Ingram PA, Benfey PN, Elich T: From lab to field, new
approaches to phenotyping root system architecture. Curr
Opin Plant Biol 2011, 14:310-317.

This review summarizes the available approaches for root system archi-
tecture (RSA) phenotyping in the laboratory and field.
www.sciencedirect.com 
17. Micol JL: Leaf development: time to turn over a new leaf? Curr
Opin Plant Biol 2009, 12:9-16.

18. Tackenberg O: A new method for non-destructive
measurement of biomass, growth rates, vertical biomass
distribution and dry matter content based on digital image
analysis. Ann Bot 2007, 99:777-783.

19.
��

Golzarian MR, Frick RA, Rajendran K, Berger B, Roy S, Tester M,
Lun DS: Accurate inference of shoot biomass from high-
throughput images of cereal plants. Plant Methods 2011, 7:2.

This study improved a model that enables a more accurate high-through-
put estimation of biomass for cereal plants under both control and saline
conditions using a Scanalyzer 3D designed by LemnaTec.

20.
��

Duan LF, Yang WN, Huang CL, Liu Q: A novel machine-vision-
based facility for the automatic evaluation of yield-related
traits in rice. Plant Methods 2011, 7:44.

This work developed an integrated facility to achieve fully automated yield
trait scoring. The facility is able to automatically thresh rice panicles,
evaluate rice yield traits, and pack filled spikelets. Tests of this novel
machine vision-based facility demonstrated its high accuracy (mean
absolute percentage error is less than 5%) and efficiency (1440 plants
per continuous 24 hours workday).

21. Bauriegel E, Giebel A, Herppich WB: Hyperspectral and
chlorophyll fluorescence imaging to analyse the impact of
fusarium culmorum on the photosynthetic integrity of infected
wheat ears. Sensors 2011, 11:3765-3779.

22. Roy SJ, Tucker EJ, Tester M: Genetic analysis of abiotic stress
tolerance in crops. Curr Opin Plant Biol 2011, 14:232-239.
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79. Römer C, Bürling K, Hunsche M, Rumpf T, Noga G, Plümer L:
Robust fitting of fluorescence spectra for pre-symptomatic
wheat leaf rust detection with Support Vector Machines.
Comput Electron Agric 2011, 79:180-188.

80. Karkee M, Steward BL, Tang L, Aziz SA: Quantifying sub-pixel
signature of paddy rice field using an artificial neural network.
Comput Electron Agric 2009, 65:65-76.

81. Klukas C, Pape JM, Entzian A: Analysis of high-throughput plant
image data with the information system IAP. J Integr Bioinform
2012, 9:191.
Current Opinion in Plant Biology 2013, 16:180–187


	Plant phenomics and high-throughput phenotyping: accelerating rice functional genomics using multidisciplinary technologies
	Introduction
	Key technologies in plant phenomics
	Visible light imaging
	Infrared and hyperspectral imaging
	3D structural tomography and functional imaging

	Current applications of phenomics in rice or other cereal crops
	Abiotic stress resistance
	Insect and disease resistance
	Yield and quality improvement
	Conclusions and future directions

	Conflicts of interest
	Acknowledgements
	References and recommended reading


